笔趣阁

69书吧>学霸的AI系统笔趣阁免费阅读 > 第44章 GPU的妙用(第1页)

第44章 GPU的妙用(第1页)

深夜的宿舍内,只有三人起伏的鼾声。

齐凡逛遍外网各大技术论坛,还有各类论文数据库,以及各种大小期刊数据库。

他发现一个可悲的现实--没人想过要用GPU来跑深度学习模型。

所谓的深度学习,就是N层神经网络的叠加。就好比是千层糕,每一层神经网络就相当于千层糕中的一层。于是一层又一层的神经网络叠加,这块千层糕就越来高。相对来说,就是神经网络的深度越来越深。

因此,采用多层神经网络的模型才会被称为深度学习模型。

而神经网络层数越多,模型的深度越深,势必就会带来运算量的增加。

虽然深度学习的概念早就被提出了,可是碍于CPU运算能力的限制,也就是碍于硬件能力的限制,一直没得到长足发展。

齐凡好奇。既然CPU的运算量能力不足,那干嘛不上超算,搞它个一堆CPU。众人拾柴火焰高,几百个CPU一块运算,就不信这还不够。

正在他好奇之间,脑海中的系统面板有了变化。

【任务--开启并行计算。奖励:经验、积分、一次中级转盘奖励。】

齐凡嘴角邪魅一笑。他如今对这系统的尿性已经有十足了解。每当自己接触新东西时,就会触发这系统的提示。

既然眼下系统提示了,那说明自己的路子就是正确的。

并行计算?多核CPU还是用GPU?

齐凡查了下多核CPU的现状。除了那些被当成国之重器的超级计算机,一般的服务器撑死了十几个CPU就不得了了。

这系统不可能指引自己去碰超级计算机的,因为那玩意儿根本就不是如今的自己能触碰的。况且这任务的奖励是一次中级转盘,从奖励来看也不是难于上青天的任务。

那也就只有两种可能。用多核心服务器或者是用GPU。

齐凡先查了下CPU和GPU的运算原理。CPU和GPU相比,前者更像是串行计算,就是一条条数据排着队一次被CPU处理。而GPU则不同,它可以让格式雷同的数据,排排站手牵手并排地被它处理。

多核心的CPU本身并未改变CPU的计算方式,只是相当于多找了些帮手。一个核心的CPU就是一個帮手,多核心CPU相当于一群人一起干活,但是每个人干活的方式却并未改变。

那答案就呼之欲出了,肯定是用GPU来支持并行计算。

而眼下遗憾的是,齐凡并未在网上找到任何相关的资料。不过呢,这既是他的麻烦,也是他的机会。

因为没人做过,他就成了那个第一个吃螃蟹的人。

();()  齐凡当即上英威达的官网,下载了GTX680的底层库。他打算动手自己写。

这底层库非常不好找,在英威达官网极其角落的地方。或许连英威达官方都觉得不会有人拿显卡来跑图形计算以外的工作。底层库被打开后,也证实了这一点。

整个底层库的应用介绍中,全部都是关于图形计算的。齐凡无奈吐槽:可怕的惯性思维,待我来给你们一点小小的震撼。

贤者饮料被大口大口的灌下,齐凡快速检索着底层库的英文文档。

这显卡底层库的设计初衷,是给Photoshop和CAD等绘图软件用的。因而提供的接口文档简直稀烂。英威达官方就没打算给个人开发者使用,而对于Photoshop那类大公司产品,英威达自然会派专业工程师负责对接。

齐凡猜测,英威达肯定不会给那些大公司也提供这种晦涩难懂的破文档。这放在官网上的底层库鬼知道是什么垃圾版本,弄不好是bug一堆。可无奈,他眼下只好先凑合拿来用用。因为他要是给英威达官方发邮件,对方肯定不会鸟他。

临近拂晓,齐凡总算用C++写了个英威达显卡的Python接口库。测试了下,果然bug一堆。而且细看那些bug,很多都是无厘头,在文档上找不到半点信息的。

无奈,齐凡只好想了个折中的办法--跑去github吐槽。

齐凡登录github账号。自己的那个去除马赛克项目又涨了不少start和评论。

他灵机一动,正好利用这波小热度。

于是他fork了一个去除马赛克2。0版本。

已完结热门小说推荐

最新标签